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1. Random variables

a. Random variables: X, Y, Z ... take on different values with different probabilities;
convention is to use capital letters for random variables and lower case letters for realized
values

I. So, for instance, X is a random variable, and x or x, X,, and x, would be specific
realized values of X

b. (Probability) Density functions (pdfs): describe the distribution of the random variable
. the probability that the random variable takes on different values... used to determine
probabilities

i. Discrete random variable (e.g. Binomial distribution): takes on a finite or countably
infinite set of values with positive probability

1. density function: f(x;)=P(X =X;)>0and Z f(x;) =1 (note sigma notation)
ii. Continuous random variable (e.g. Normal distribution)

1. density function: f(x)>0 and If(x)dx =1
iii. Use the density functions to determine the probabilities:

1. Discrete: P(a<X <b)= > P(X=x)= > f(x)

a<x<b a<x<b

2. Continuous: P(a< X <b) = Ib f (x)dx
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c. Examples of random variables

Uniform [a,b]: f(X) = bL x e[a,b] and is 0 otherwise
-a

1.
Standard Normal - N(0,1): f(x) = 1 e?

2z

2. Measures of central tendencies and variability

a. Expectation/Mean (measure of central tendency): E(X), u

The average value of X (observed with a large number of random samples from the
distribution)

. A weighted average of the different values of X (weight the values by their respective

probabilities)
1. Discrete: E(X)=u=Y xP(X =x)=>xf(x)
2. Continuous: E(X)=u :Ixf (x)dx

Properties
1. Linear operator: E(aX +b)=aE(X)+Db

a. Extends to many random variables:
E(Zaixi) = Z E@X;)= ZaiE(Xi) = Zai:ui

2. And for some function g(.), E(g(X)) = Z g(x)f(x) or J'g(x) f (x)dx fora
continuous distribution

b. Variance (measure of variability or dispersion around the mean): Var(X), o

The average squared deviation of X from its mean (observed with a large number of
random samples from the distribution)

. A weighted average of the different squared deviations of X from its mean (weight

the squared deviations by their respective probabilities)
1. Discrete: Var(X)=E(X —u)? =Y (x —u) P(X =x) =D (% —#)" f(x)
2. Continuous: Var(X)=E(X — u)? = I(x—,u)2 f (x)dx

3. o® =E(X-p)* =E(X?)-p*
Properties:

1. Not a linear operator: Var(aX +b) =a®var(X)
Standard deviation (StdDev): o =+/a? ... (positive square root)

2
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1. Linear operator: if a>0, then
StdDev(aX +b) = \Var(aX) = /a?var(X) = a StdDev(X)

.. . X - .
c. Standardizing random variables (z-scores): Z = ATH (has mean zero and unit
O
variance)

i. Mean: E(Z):E(ﬂjzl(E(X)—y)zo
O O

ii. Variance: Var(Z):E(ZZ):izVar(X):l
O

3. Joint density functions

a. Consider X and Y, two random variables (e.g. people are randomly drawn from a
population and their heights and weights are recorded)

b. If discrete, then the joint density is defined by f,, (x,y) =P(X =x &Y =y)
c. Notethat P(X =x) = f, (x) =Y P(X =x&Y =y)=> f, (xy).
y y

I.  So, the marginal density P(X =x) = f, (x) is the sum over the joint densities

D (xy) .

d. Here’s an example.

i. In the following table, the random variable X takes on three values (x1, x2 and x3),
and Y takes on two (y1 and y2). The figures in the XY box are the joint probabilities,
foy (X, ¥Y)=P(X =x&Y =y). And so, for example,

foy XLYD)=P(X =x1&Y =yl)=.2.

ii. And the marginal probabilities can be recovered from the joint probabilities by just
summing across the rows and columns. So, for example,
P(X =x1) = f, (x)) = D P(X =x1L &Y =j)
j=1,2

=f,(XLy)+ f,, (XL, y2)=.2+.2= 4.

Y
yl y2
x1 0.2 0.2 0.4 |P(X=x1)
X x2 0.1 0.3 0.4 |P(X=x2)
x3 0.1 0.1 0.2 |P(X=x3)
0.4 0.6
P(Y=y1) |P(Y=y2)
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Independence

Ly (X y)=P(X=x)P(Y =y)=f, (x)f,(y) forall values of Xand Y, (xy) ... the

joint density function is the product of the marginal densities (applies to discrete and
continuous distributions)

1. Xand Y in the previous example are not independent, since, for example:
fy (XL yl) =.2%P(X = x)P(Y = y) = f, (x) f, (yD) =(.4)(.4) =.16
ii. We can extend to many independent random variables:
fx1,x2,...,><n (X, Xpyeey X, ) = P(X =%, X, =Xy, X, = X,)
=, () fi, () B () =TT, Fi (%)

iii. Not independent means dependent

4. Measures of association

a.
b.

C.

Consider two random variables, X and Y.
Covariance: Cov(X,Y) =0y, =E(X = )Y = 11) = 2 (X = 11, )(y = 1) T (x,y)

Some examples: X and Y both have mean 0 in the following examples. On the left, most
of the data are in quadrants | and 111, where (x — z, )(y — £, ) > 0, and so when you sum

those products you get a positive covariance. Most of the action on the right is in
quadrants 1l and 1V where (x — x, )(y — £, ) <0, and so those products sum to a negative

covariance.

w
w

4
*

*
%

%

Y

40
3 ¢¢-M’.’ L I 3|3 1o . 3
e ot _ %

| ’W‘f&m .

e | e |
=L =L

o ] o ]
= =

Properties:
. Cov(X,Y)=o0, =E(XY)—pu, 1,

ii. Note that Cov(X,X) =o,, = E(X — 1, )(X =z, ) =Var(X) = o3
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iii. Measures the extent to which there is a linear relationship between X and Y

iv. If Cov(X,Y) >0 then as illustrated above, X and Y tend to move together in a

positive direction, so that increases is X are on average associated with increases in
Y... and if the covariance is negative, then they tend to move in opposite directions

v. If XandY are independent, then Cov(X,Y)=0,, =0
1. Opposite need not hold... o,, =0 does not necessarily imply independence... it
could just mean that there is a highly non-linear relationship between X and Y.
2. Here’s an example of X & Y having zero covariance, but not being independent:

Joint & Marginal Densities Cov Contributions
Y Y
0 1 0 1
-1 - 0.33 0.33 | E(X)= -1 0.67 | (0.33)
X 0| 0.33 - 0.33 0 0 - -
1] - 0.33 0.33 1 (0.67)] 0.33
[ 0.33] 0.67] Cov(X,Y) 0.0000
E(Y)= 0.67

vi. Cov(a+bX,c+dY)=hbdCov(X,Y)

Vii. |oyy | <|oy oy | the magnitude of the covariance is never greater than the product of

the magnitudes of the standard deviations (this is an instance of the Cauchy-Schwartz
Inequality)

e. Variances of sums of random variables
i. Var(X +Y)=o% +2Cov(X,Y)+ 0o
ii. More generally: Var(a, X, +a,X,) =a/oy +2aa,Cov(X,, X,)+a;05

iii. Soif Cov(X,Y) =0 (sothat X and Y are uncorrelated), then
Var(X +Y) =Var(X)+Var(Y) (the variance of the sum is the sum of the variances)

iv. And even more generally:

1. Var[ZaiXij: > > aa;,Cov(X;,X,) ... note that when i=j, the term is
i=1

i-1 j-1
a’Cov(X;, X;) =a’c’

2. Ifthe X;’s are pairwise uncorrelated, then Cov(X;, X;) =0 when i = j, and so in

this case, Var[znlai Xij = anzn:aiajCov(Xi X)) = Zn:aiaiCov(Xi X)) = Zn:afaf
i=1 i=1

i=1 i=1 j=1
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a. If they are pairwise uncorrelated, then the variance of the sum is the sum of
the variances.

Cov(X,Y) _ Oy
StdDev(X)StdDev(Y) o0y

f. Correlation: Corr(X,Y)= p,, =

i. |O'XY|S|O'XO'Y|:>—1SO-¢S]. .. 80 -1<p,, <1
Ox Oy

ii. And similar to above:
1. If Cov(X,Y)=0,then p,, =0.

2. If X'and Y are independent, then they are uncorrelated and p,, =0

3. p,y Captures the extent to which there is a linear relationship between X and Y
... Which is similar to, though not the same as, the extent to which they move
together

Cov(X,Y)

StdDev(Y) StdDev(X)

4. If Y =aX +b, then Corr(X,Y) = p,, =

laloxox |al

and so if X and Y are linearly related they have a correlation of +1 or -1.

iii. Properties:
1. Corr(a X, +b,a,X, +b,)=Corr(X,, X,) if aa, >0, and =—Corr(X,, X,) if
aa, <0

2. So linear transformations of random variables may affect the sign of the
correlation, but not the magnitude.

5. Interesting result

a. Suppose that the random variable Y is a linear function of another random variable X
plus an additive random error U, which is uncorrelated with X, then:

i. Y=a+bX+U,whereY,X andU are all random variables and Cov(X,U)=0
ii. Cov(X,Y)=Cov(X,a+bX +U)=Cov(X,a)+bCov(X, X)+Cov(X,U)
iii. Since Cov(X,a)=Cov(X,U)=0, Cov(X,Y)=bCov(X, X)

_ Cov(X,Y) oy Oy U—Y:pxyi:Corr(X,Y) StdDev(Y)

iv. ... orb= = =
Cov(X,X) oy oy0o, Oy oy StdDev(X)

1. This is a relationship that will haunt you throughout the semester.
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6. Conditional distributions

P(ANB)

a. Recall the definition of conditional probabilities: P(A|B) = P(B) which might
P(Y=y& X =X)
suggest that P(Y =y | X =x) =
99 (Y =y[X=x) PIX = %)
fey (X Y)

d.

If discrete, then f,, (y[x)=P(Y =y|X =X) = ... same formula applies to

fx (X)

continuous distributions

I. Dividing by f, (x) effectively “scales up” the marginal densities.... and ensures that
you have a valid density function, since

Crhey) 1 f () _
oy 0ey =[ =007 =7 O

If X and Y are independent then the conditional distributions and marginal distributions
are the same

o f () =1, (y) and = f,, (x] y) = £, (%)

ii. Inwords: If X and Y are independent than knowing the particular value of Y, vy, tells
you nothing new about X, and vice-versa

[ s 06 y)dy =

Conditional expectations and variances

i. The expected value of Y conditional on X being a certain value... as the value of X
changes, the conditional expectation of Y given X=x may also change

1. E(Y|X:X):E(Y|X):zyjP(Y:yj|X:X):Zyjfy|x(yj | X)

2. If Xand Y are independent, then E(Y | X = x) = E(Y) ... knowing the value of X
doesn’t change the expected value of Y

ii. Conditional variances are similarly defined... the expected squared deviation from
the conditional mean:

1 Var(Y [ X =x)=E(Y —E(Y [ X =x)] | X =x) = E(Y? | x) - (E(Y | %)’
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7. The Normal distribution

a. Standard Normal (Gaussian): N(,u,O'Z) has mean 4 and variance o

b. If Xis N(u,0°%), then Z = X=H s N(0,1) (the Standard Normal distribution)
(o2

c. Properties:

i, If Xis N(u,0”) then aX +b ~ N(au+b,a’c?)
ii. If X, and X, are independent with the same distribution, N (x,6), then
X, + X, ~N(2u,25?)
- - - 1 1 2
1. This implies thatE(Xl +X,)~ N('H’EG ).

iii. More generally, assume that n random variables ( X,, X,, ... X, ) are independently
and identically distributed N(x,c*), then > X; ~N(ng,no?) and

X :%Z X, ~ N(,u,%o*z) .

iv. X = 12 X, is a specific form of the more general weighted average Y = Zai X,
n
where 0< ¢, <1 foralliand Y o =1.
1. Y will havemean Y o= a; = u

2. ...and variance =Y alc’ =c’) a?, and will be Normally distributed.
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8. Appendix | - Correlation and Linear Relationships:
x| =1 P(Y =B, + B X) =1
a. Linear implies a correlation of +1 or -1
i. Supposethat Y =4, + £, X and g #0.

il. Then COV(X,Y) = COV(Xfﬁo +ﬂlx) = E((X — Hx )(ﬂo +ﬂ1X _:Bo _ﬂlﬂx ))
= BE((X — 1y )2) = f, var(X).

iii. And since var(Y) = E((8, + B,X — B, — Buttx )?) = BEE((X — 11 )?) = 57 var(X) , the
correlation of X and Y is:

Py = Cov(X,Y) = A, var(X) = A =+1or —1 depending on the
Jvar(X) var(Y) \/var(x) Bivar(X) B
signof g, #0.

b. Non-linear implies correlation not +1 or -1 ... here’s an example:
i. Supposethat U =Y — (4, + £, X), where g, =0and cov(X,U) =0, but
var(U) = o) = 0(so we don’t have a perfectly linear relationship between X and Y).

ii. Then cov(X,Y)=cov(X, 5, + BX +U) =E((X — )L, + BX +U =B, - Buy)) -
iii. And since var(Y)=E((B, + BX +U =B, — By )?)
= BPE((X — i )?) + 23, cov(X,U) +var(U) = g7 var(X)+ao_, the correlation of X
cov(X,Y) _ S, var(X)
Jvar(X)var(Y) \/var(X)(,Bf var(X) + oy, )

and Y is: py, =

iv. Since var(U) = o, # 0, the denominator will be larger in magnitude than the
numerator and so |py, | <1.

v. Notice that if o =0, then we have a linear relationship, and as above
Pyy =+1lor =1.
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9. Appendix Il: Covariance and independence

Not Independent!

Y = X2 marginal
0 0.25 1 for X
-1 0% 0%| 20% 20%
-0.5 0% 20% 0% 20%
X 0 20% 0% 0% 20%
0.5 0% 20% 0% 20%
1 0% 0%| 20% 20%
marginal for Y
| 20%|  40%| 40%|
Covariance calculation
prob X Y
20% -1 1
20% -0.5 0.25
20% 0 0
20% 0.5 0.25
20% 1 1
0 0.5
variance 0.625] 0.2188
covariance 0 covar=0
X-muX Y-muY product
-1 0.5 -0.5
-0.5] -0.25 0.125
0 -0.5 0
0.5] -0.25 -0.125
1 0.5 0.5
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Independent!
Y marg
0 0.25 1
-1 4%| 8%| 8% 20%
-0.5] 4%| 8%| 8% 20%
0] 4%]| 8%]| 8% 20%
0.5] 4%| 8%| 8% 20%
1l 4%| 8%| 8% 20%
marg| 20%| 40%| 40%| Indep!




