- Random variables
- Measure of central tendencies and variability (means and variances)
- Joint density functions and independence
- Measures of association (covariance and correlation)
- Interesting result
- Conditional distributions
- The Normal distribution
- Appendix I: Correlation, independence and linear relationships
- Appendix II: Covariance and independence

1. Random variables

- a. Random variables: X, Y, Z ... take on different values with different probabilities; convention is to use capital letters for random variables and lower case letters for realized values
 - i. So, for instance, X is a random variable, and x or x_1 , x_2 , and x_3 would be specific realized values of X
- b. (Probability) Density functions (pdfs): describe the distribution of the random variable
 ... the probability that the random variable takes on different values... used to determine probabilities
 - i. Discrete random variable (e.g. Binomial distribution): takes on a finite or countably infinite set of values with positive probability
 - 1. density function: $f(x_j) = P(X = x_j) \ge 0$ and $\sum f(x_j) = 1$ (note sigma notation)
 - ii. Continuous random variable (e.g. Normal distribution)
 - 1. density function: $f(x) \ge 0$ and $\int f(x)dx = 1$
 - iii. Use the density functions to determine the probabilities:
 - 1. Discrete: $P(a < X \le b) = \sum_{a < x \le b} P(X = x) = \sum_{a < x \le b} f(x)$
 - 2. Continuous: $P(a < X \le b) = \int_a^b f(x) dx$

- c. Examples of random variables
 - i. Uniform [a,b]: $f(x) = \frac{1}{b-a} x \in [a,b]$ and is 0 otherwise
 - ii. Standard Normal N(0,1): $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$

2. Measures of central tendencies and variability

- a. Expectation/Mean (measure of central tendency): E(X), μ
 - i. The average value of X (observed with a large number of random samples from the distribution)
 - ii. A weighted average of the different values of X (weight the values by their respective probabilities)
 - 1. Discrete: $E(X) = \mu = \sum x_i P(X = x_i) = \sum x_i f(x_i)$
 - 2. Continuous: $E(X) = \mu = \int xf(x)dx$
 - iii. Properties
 - 1. Linear operator: E(aX + b) = aE(X) + b
 - a. Extends to many random variables:

$$E(\sum a_i X_i) = \sum E(a_i X_i) = \sum a_i E(X_i) = \sum a_i \mu_i$$

- 2. And for some function g(.), $E(g(X)) = \sum g(x_i) f(x_i)$ or $\int g(x) f(x) dx$ for a continuous distribution
- b. Variance (measure of variability or dispersion around the mean): Var(X), σ^2
 - i. The average squared deviation of X from its mean (observed with a large number of random samples from the distribution)
 - ii. A weighted average of the different squared deviations of X from its mean (weight the squared deviations by their respective probabilities)

1. Discrete:
$$Var(X) = E(X - \mu)^2 = \sum_{i=1}^{n} (x_i - \mu)^2 P(X = x_i) = \sum_{i=1}^{n} (x_i - \mu)^2 f(x_i)$$

2. Continuous:
$$Var(X) = E(X - \mu)^2 = \int (x - \mu)^2 f(x) dx$$

3.
$$\sigma^2 = E(X - \mu)^2 = E(X^2) - \mu^2$$

- iii. Properties:
 - 1. Not a linear operator: $Var(aX + b) = a^2Var(X)$
- iv. Standard deviation (StdDev): $\sigma = \sqrt{\sigma^2}$... (positive square root)

2

1. Linear operator: if a>0, then

$$StdDev(aX + b) = \sqrt{Var(aX)} = \sqrt{a^2Var(X)} = a \ StdDev(X)$$

c. Standardizing random variables (z-scores): $Z = \frac{X - \mu}{\sigma}$ (has mean zero and unit variance)

i. Mean:
$$E(Z) = E\left(\frac{X-\mu}{\sigma}\right) = \frac{1}{\sigma}(E(X)-\mu) = 0$$

ii. Variance:
$$Var(Z) = E(Z^2) = \frac{1}{\sigma^2} Var(X) = 1$$

3. Joint density functions

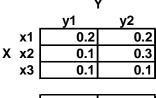
- a. Consider X and Y, two random variables (e.g. people are randomly drawn from a population and their heights and weights are recorded)
- b. If discrete, then the joint density is defined by $f_{XY}(x, y) = P(X = x \& Y = y)$

c. Note that
$$P(X = x) = f_X(x) = \sum_y P(X = x \& Y = y) = \sum_y f_{XY}(x, y)$$
.

- i. So, the marginal density $P(X = x) = f_X(x)$ is the sum over the joint densities $\sum_y f_{XY}(x, y) .$
- d. Here's an example.
 - i. In the following table, the random variable X takes on three values (x1, x2 and x3), and Y takes on two (y1 and y2). The figures in the XY box are the joint probabilities, $f_{XY}(x,y) = P(X = x \& Y = y)$. And so, for example, $f_{XY}(x1,y1) = P(X = x1 \& Y = y1) = .2$.
 - ii. And the marginal probabilities can be recovered from the joint probabilities by just summing across the rows and columns. So, for example,

$$P(X = x1) = f_X(x1) = \sum_{j=1,2} P(X = x1 \& Y = yj)$$

= $f_{XY}(x1, y1) + f_{XY}(x1, y2) = .2 + .2 = .4$.



0.4	P(X=x1)
0.4	P(X=x2)
0.2	P(X=x3)

0.4	0.6
P(Y=y1)	P(Y=y2)

e. Independence

- i. $f_{X,Y}(x,y) = P(X=x)P(Y=y) = f_X(x)f_Y(y)$ for all values of X and Y, (x,y) ... the joint density function is the product of the *marginal* densities (applies to discrete and continuous distributions)
 - 1. X and Y in the previous example are not independent, since, for example:

$$f_{X,Y}(x1, y1) = .2 \neq P(X = x1)P(Y = y1) = f_X(x1)f_Y(y1) = (.4)(.4) = .16$$

ii. We can extend to many independent random variables:

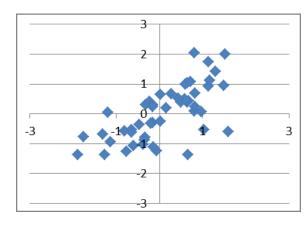
$$f_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) = P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

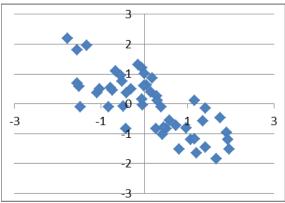
$$= f_{X_1}(x_1) f_{X_2}(x_2) \dots f_{X_n}(x_n) = \prod_{i=1}^n f_{X_i}(x_i)$$

iii. Not independent means dependent

4. Measures of association

- a. Consider two random variables, X and Y.
- b. Covariance: $Cov(X,Y) = \sigma_{XY} = E(X \mu_X)(Y \mu_Y) = \sum_{X} (x \mu_X)(y \mu_Y) f(x,y)$
- c. Some examples: X and Y both have mean 0 in the following examples. On the left, most of the data are in quadrants I and III, where $(x \mu_X)(y \mu_Y) > 0$, and so when you sum those products you get a positive covariance. Most of the action on the right is in quadrants II and IV where $(x \mu_X)(y \mu_Y) < 0$, and so those products sum to a negative covariance.





d. Properties:

- i. $Cov(X,Y) = \sigma_{XY} = E(XY) \mu_X \mu_Y$
- ii. Note that $Cov(X, X) = \sigma_{XX} = E(X \mu_X)(X \mu_X) = Var(X) = \sigma_X^2$

- iii. Measures the extent to which there is a <u>linear</u> relationship between X and Y
- iv. If Cov(X,Y) > 0 then as illustrated above, X and Y tend to move together in a positive direction, so that increases is X are on average associated with increases in Y... and if the covariance is negative, then they tend to move in opposite directions
- v. If X and Y are independent, then $Cov(X,Y) = \sigma_{XY} = 0$
 - 1. Opposite need not hold... $\sigma_{XY} = 0$ does not necessarily imply independence... it could just mean that there is a highly non-linear relationship between X and Y.
 - 2. Here's an example of X & Y having zero covariance, but not being independent:

Joint & Marginal Densities				Cov Contributions		
	Υ			Υ		
	0	1			0	1
-1	-	0.33	0.33 E(X)=	-1	0.67	(0.33)
X 0	0.33	-	0.33 0	0	-	-
1	-	0.33	0.33	1	(0.67)	0.33
	0.33 E(Y)=	0.67 0.67		С	ov(X,Y)	0.0000

- vi. Cov(a + bX, c + dY) = bdCov(X, Y)
- vii. $|\sigma_{XY}| \le |\sigma_X \sigma_Y|$ the magnitude of the covariance is never greater than the product of the magnitudes of the standard deviations (this is an instance of the Cauchy-Schwartz Inequality)
- e. Variances of sums of random variables

i.
$$Var(X + Y) = \sigma_X^2 + 2Cov(X, Y) + \sigma_Y^2$$

ii. More generally:
$$Var(a_1X_1 + a_2X_2) = a_1^2\sigma_{X_1}^2 + 2a_1a_2Cov(X_1, X_2) + a_2^2\sigma_{X_2}^2$$

- iii. So if Cov(X,Y) = 0 (so that X and Y are *uncorrelated*), then Var(X+Y) = Var(X) + Var(Y) (the variance of the sum is the sum of the variances)
- iv. And even more generally:

1.
$$Var\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j Cov(X_i, X_j)$$
 ... note that when i=j, the term is $a_i^2 Cov(X_i, X_i) = a_i^2 \sigma_i^2$

5

2. If the X_i 's are pairwise uncorrelated, then $Cov(X_i, X_j) = 0$ when $i \neq j$, and so in this case, $Var\left(\sum_{i=1}^n a_i X_i\right) = \sum_{i=1}^n \sum_{j=1}^n a_i a_j Cov(X_i, X_j) = \sum_{i=1}^n a_i a_i Cov(X_i, X_i) = \sum_{i=1}^n a_i^2 \sigma_i^2$

a. If they are pairwise uncorrelated, then the variance of the sum is the sum of the variances.

f. Correlation:
$$Corr(X,Y) = \rho_{XY} = \frac{Cov(X,Y)}{StdDev(X)StdDev(Y)} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

i.
$$|\sigma_{XY}| \le |\sigma_X \sigma_Y| \Rightarrow -1 \le \frac{\sigma_{XY}}{\sigma_X \sigma_Y} \le 1$$
 ... so $-1 \le \rho_{XY} \le 1$

- ii. And similar to above:
 - 1. If Cov(X,Y) = 0, then $\rho_{XY} = 0$.
 - 2. If X and Y are independent, then they are uncorrelated and $\rho_{xy} = 0$
 - 3. ρ_{XY} captures the extent to which there is a <u>linear</u> relationship between X and Y ... which is similar to, though not the same as, the extent to which they move together

4. If
$$Y = aX + b$$
, then $Corr(X,Y) = \rho_{XY} = \frac{Cov(X,Y)}{StdDev(Y) StdDev(X)}$
$$= \frac{aVar(X)}{|a|\sigma_X\sigma_Y} = \frac{a}{|a|} = 1 \text{ or } -1 \dots$$

and so if X and Y are linearly related they have a correlation of +1 or -1.

- iii. Properties:
 - 1. $Corr(a_1X_1 + b_1, a_2X_2 + b_2) = Corr(X_1, X_2)$ if $a_1a_2 > 0$, and $= -Corr(X_1, X_2)$ if $a_1a_2 < 0$
 - 2. So linear transformations of random variables may affect the sign of the correlation, but not the magnitude.

5. Interesting result

- a. Suppose that the random variable Y is a linear function of another random variable X plus an additive random error U, which is uncorrelated with X, then:
 - i. Y = a + bX + U, where Y, X and U are all random variables and Cov(X, U) = 0
 - ii. Cov(X,Y) = Cov(X,a+bX+U) = Cov(X,a) + bCov(X,X) + Cov(X,U)
 - iii. Since Cov(X,a) = Cov(X,U) = 0, Cov(X,Y) = bCov(X,X)

iv. ... or
$$b = \frac{Cov(X,Y)}{Cov(X,X)} = \frac{\sigma_{XY}}{\sigma_{XX}} = \frac{\sigma_{XY}}{\sigma_{X}} \frac{\sigma_{Y}}{\sigma_{X}} = \rho_{XY} \frac{\sigma_{Y}}{\sigma_{X}} = Corr(X,Y) \frac{StdDev(Y)}{StdDev(X)}$$

1. This is a relationship that will haunt you throughout the semester.

6. Conditional distributions

- a. Recall the definition of conditional probabilities: $P(A \mid B) = \frac{P(A \mid B)}{P(B)}$, which might suggest that $P(Y = y \mid X = x) = \frac{P(Y = y \& X = x)}{P(X = x)}$
- b. If discrete, then $f_{Y|X}(y \mid x) = P(Y = y \mid X = x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$... same formula applies to continuous distributions
 - i. Dividing by $f_X(x)$ effectively "scales up" the marginal densities.... and ensures that you have a valid density function, since

$$\int f_{Y|X}(y|x)dy = \int \frac{f_{X,Y}(x,y)}{f_X(x)}dy = \frac{1}{f_X(x)} \int f_{X,Y}(x,y)dy = \frac{f_X(x)}{f_X(x)} = 1.$$

- c. If X and Y are independent then the conditional distributions and marginal distributions are the same
 - i. $f_{Y|X}(y \mid x) = f_Y(y)$ and $f_{X|Y}(x \mid y) = f_X(x)$
 - ii. In words: If X and Y are independent than knowing the particular value of Y, y, tells you nothing new about X, and vice-versa
- d. Conditional expectations and variances
 - i. The expected value of Y conditional on X being a certain value... as the value of X changes, the conditional expectation of Y given X=x may also change

1.
$$E(Y \mid X = x) = E(Y \mid x) = \sum_{i} y_{i} P(Y = y_{i} \mid X = x) = \sum_{i} y_{i} f_{Y \mid X}(y_{i} \mid x)$$

- 2. If X and Y are independent, then E(Y | X = x) = E(Y) ... knowing the value of X doesn't change the expected value of Y
- ii. Conditional variances are similarly defined... the expected squared deviation from the conditional mean:

1.
$$Var(Y \mid X = x) = E([Y - E(Y \mid X = x)]^2 \mid X = x) = E(Y^2 \mid x) - (E(Y \mid x))^2$$

7. The Normal distribution

- a. Standard Normal (Gaussian): $N(\mu, \sigma^2)$ has mean μ and variance σ^2
- b. If X is $N(\mu, \sigma^2)$, then $Z = \frac{X \mu}{\sigma}$ is N(0,1) (the Standard Normal distribution)
- c. Properties:
 - i. If X is $N(\mu, \sigma^2)$ then $aX + b \sim N(a\mu + b, a^2\sigma^2)$
 - ii. If X_1 and X_2 are independent with the same distribution, $N(\mu, \sigma^2)$, then $X_1 + X_2 \sim N(2\mu, 2\sigma^2)$
 - 1. This implies that $\frac{1}{2}(X_1 + X_2) \sim N(\mu, \frac{1}{2}\sigma^2)$.
 - iii. More generally, assume that n random variables $(X_1, X_2, ..., X_n)$ are independently and identically distributed $N(\mu, \sigma^2)$, then $\sum X_i \sim N(n\mu, n\sigma^2)$ and

$$\overline{X} = \frac{1}{n} \sum X_i \sim \mathcal{N}(\mu, \frac{1}{n} \sigma^2).$$

- iv. $\overline{X} = \frac{1}{n} \sum X_i$ is a specific form of the more general weighted average $Y = \sum \alpha_i X_i$, where $0 \le \alpha_i \le 1$ for all i and $\sum \alpha_i = 1$.
 - 1. Y will have mean $\sum \alpha_i \mu = \mu \sum \alpha_i = \mu$
 - 2. ... and variance = $\sum \alpha_i^2 \sigma^2 = \sigma^2 \sum \alpha_i^2$, and will be Normally distributed.

8. Appendix I - Correlation and Linear Relationships:

$$|\rho_{XY}| = 1 \Leftrightarrow P(Y = \beta_0 + \beta_1 X) = 1$$

- a. Linear implies a correlation of +1 or -1
 - i. Suppose that $Y = \beta_0 + \beta_1 X$ and $\beta_1 \neq 0$.
 - ii. Then $cov(X,Y) = cov(X, \beta_0 + \beta_1 X) = E((X \mu_X)(\beta_0 + \beta_1 X \beta_0 \beta_1 \mu_X))$ = $\beta_1 E((X - \mu_X)^2) = \beta_1 var(X)$.
 - iii. And since $var(Y) = E((\beta_0 + \beta_1 X \beta_0 \beta_1 \mu_X)^2) = \beta_1^2 E((X \mu_X)^2) = \beta_1^2 var(X)$, the correlation of *X* and *Y* is:

$$\rho_{XY} = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}(X) \text{var}(Y)}} = \frac{\beta_1 \text{ var}(X)}{\sqrt{\text{var}(X)\beta_1^2 \text{var}(X)}} = \frac{\beta_1}{\sqrt{\beta_1^2}} = +1 \text{ or } -1 \text{ depending on the sign of } \beta_1 \neq 0.$$

- b. Non-linear implies correlation not +1 or -1 ... here's an example:
 - i. Suppose that $U = Y (\beta_0 + \beta_1 X)$, where $\mu_U = 0$ and cov(X, U) = 0, but $var(U) = \sigma_U^2 \neq 0$ (so we don't have a perfectly linear relationship between X and Y).
 - ii. Then $cov(X,Y) = cov(X,\beta_0 + \beta_1 X + U) = E((X \mu_X)(\beta_0 + \beta_1 X + U \beta_0 \beta_1 \mu_X))$.
 - iii. And since $\text{var}(Y) = E((\beta_0 + \beta_1 X + U \beta_0 \beta_1 \mu_X)^2)$ $= \beta_1^2 E((X - \mu_X)^2) + 2\beta_1 \cos(X, U) + \text{var}(U) = \beta_1^2 \text{var}(X) + \sigma_U^2$, the correlation of X and Y is: $\rho_{XY} = \frac{\text{cov}(X, Y)}{\sqrt{\text{var}(X) \text{var}(Y)}} = \frac{\beta_1 \text{var}(X)}{\sqrt{\text{var}(X) \left(\beta_1^2 \text{var}(X) + \sigma_U^2\right)}}$.
 - iv. Since $var(U) = \sigma_U^2 \neq 0$, the denominator will be larger in magnitude than the numerator and so $|\rho_{XY}| < 1$.
 - v. Notice that if $\sigma_U^2 = 0$, then we have a linear relationship, and as above $\rho_{xy} = +1 \ or \ -1$.

9. Appendix II: Covariance and independence

Not Independent!

		Y	Y = X^2				
		0	0.25	1			
	-1	0%	0%	20%			
	-0.5	0%	20%	0%			
X	0	20%	0%	0%			
	0.5	0%	20%	0%			
	1	0%	0%	20%			

marginal for X
20%
20%
20%
20%
20%

			Υ		marg	
	_	0	0.25	1	_	
	-1	4%	8%	8%		20%
	-0.5	4%	8%	8%		20%
X	0	4%	8%	8%		20%
	0.5	4%	8%	8%		20%
	1	4%	8%	8%		20%
	_	-				_

Independent!

marginal for Y 20% 40% 40%

marg 20% 40% 40% Indep!

Covariance calculation

prob	Χ	Υ
20%	-1	1
20%	-0.5	0.25
20%	0	0
20%	0.5	0.25
20%	1	1

mean	0	0.5
variance	0.625	0.2188
covarianc	0	

covar = 0

	X-muX	Y-muY	product
Г	-1	0.5	-0.5
Г	-0.5	-0.25	0.125
Г	0	-0.5	0
Г	0.5	-0.25	-0.125
Γ	1	0.5	0.5